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Abstract—A method has been presented wherein the surface-parallel stresses in a laminated shell
are first computed using standard finite clement formulation and then approximate transverse shear
stress variation through the shell thickness is obtained utilizing the first two (stress) equations of
equilibrium and divergence theorem. Numerical results have been presented for both homogeneous
isotropic and laminated anisotropic cylindrical shells using the Cartesian-like Riemann coordinate
approximation and compared to the corresponding analytical solutions.
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NOMENCLATURE

total surface area of the jth triangular layer element belonging to the ith layer

elastic (material) stiffness matrix of the ith anisotropic layer

elements of [C]

nodal displacement vector for the jth layer element belonging to the ith layer
Young's modulus of an isotropic material

elastic modulus of an anisotropic material (stretching)

shear moduli of an anisotropic material

tangent (to the a-, f-, {-curves) vectors

metric tensor

associated metric tensor

first fundamental quantities of the shell reference surface for lines of curvature co-
ordinates

orthonormal basis vectors for fixed Cartesian coordinates

length of a cylindrical shell

rth physical component of unit normal vector

total number of laycrs

number of subdivisions

uniform internal pressure

inner radius of a cylindrical shell

normal curvatures of the reference surface in the directions of the lines of curvature
normal curvatures and twist of the reference surface parallel and normal to the
direction of the boundary curve

area of the jth layer element belonging to the ith layer at a distance { from the bottom
of the layer

total thickness of a laminated shell

thickness of the ith layer

volume of the jth triangular layer element belonging to the ith layer

Cartesian-like local Riemann coordinates in the directions of the lines of curvature o
and B, respectively

transverse coordinate direction

circular cylindrical shell coordinates

lines of curvature coordinates measured on the shell reference surface

perimeter of the jth layer element belonging to the ith layer at a distance { from the
bottom surface of the layer

Euclidean~Christoffe! symbol

transverse shearing strains in the ith layer

strains of line elements, originally in the «- and f-directions, located at a distance {
from the bottom of the ith layer

covariant components of unit vector normal to the element boundary

covariant components of unit vector normal to the {-surface

fiber orientation in the ith layer measured with respect to the a-direction
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1146 R. A, CHaubHURI and P. SEDE

v Poisson’s ratio for an isotropic material

Vin Vo major and minor Poisson’s ratio, respectively, in the surface of the fibers
M 0 [0

62(0), 6P(0), 13 surface-parallel components of stresses

7 contravariant components of stress tensor

13 (), TR () physical components of transverse shear stresses

angle between the boundary curve I' and the a-direction.

INTRODUCTION

The study of variation of transverse (interlaminar) shear stresses through the thickness of
a laminated shell has assumed increasing importance, because such a shell is more likely to
fail due to delamination caused by the scissoring effect of these stresses, especially in the
vicinity of free edges. Analytical solutions[1-9] are mostly restricted to simple shell geometry
(e.g. cylindrical and spherical shells). A laminated general shell solution[10] that has recently
become available is restricted to shallow shell geometry, cross-ply lamination and simply
supported boundary conditions. A numerical procedure, such as the finite element method
(FEM) seems to be the only practical alternative because of the ease with which problems
of general shell geometry, irregular shapes, non-uniform thickness, anisotropy, arbitrary
lamination, complex boundary conditions and general loadings can be handled by this
method. A review of the literature, however, suggests that short of conducting a highly
refined three-dimensional analysis, few FEM based methods are available which yield
accurate transverse shear stress variation through the thickness of a general laminated shell.
An assumed linear displacement triangular element due to Seide and Chang[11] can only
compute constant transverse shear stresses through the thickness of each layer. The quadri-
lateral element due to Mau et al.[12] based on an assumed stress hybrid approach has the
capability of predicting the transverse shear stress variation through the thickness of a thick
multi-layer plate, by considering stresses as unknown nodal parameters and imposing
constraints on the compatibility of these stresses at each interface and vanishing of the
transverse shear stresses on the top and bottom surfaces of the plate. However, this method
appears to be limited in its applicability as the formulation of the stiffness matrix involves
too many matrix inversions at the element level and extension by Spilker et al.[13] to the
triangular element shape has produced a very stiff element. More importantly, the (normal)
traction-free edge formulation has not been satisfied[13], which leads to inaccuracy in
the prediction of through-thickness transverse shear stress variations near the edge[14].
Furthermore, a review of the literature suggests that neither this method nor a displacement-
based method has been applied in the prediction of transverse shear stresses in a laminated
shell.

Recently, Seide and Chaudhuri[15] have developed an efficient triangular shell element
(plate element being a special case) based on the assumptions of transverse inextensibility
and LCST (layerwise constant shear-angle theory, Fig. 1) and assumed a quadratic (in the
curvilinear coordinate plane) displacement potential energy approach. Chaudhuri[14] has
also discussed the use of this element in obtaining accurate transverse shear stress variation
through the thickness of a thick laminated plate. The method described in Ref. [14] involves
computation of in-plane stresses in a plate by using the FEM first and then the equilibrium

{.z

Deformed Normal

Tz

Undeformed Normal

==K
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Fig. 1. Possible severe cross-sectional warping in a thick multi-layer shell.
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equations for the purpose of computing transverse shear stresses. The concept of use of
equilibrium equations to compute transverse shear stresses is due to Pryor and Barker{16],
who utilized it for a quadrilateral symmetrically laminated plate element based on CST
(constant shear-angle theory). Extension of the concept and the procedure, outlined in Ref.
[14], to laminated shells is a challenge yet to be addressed. The difficulty pertaining to
the behavior of solids in the Riemannian space is primarily mathematical in nature and
appropriate approximations based on physical judgement must be employed to obtain
reasonably accurate solutions, because deriving exact solutions is next to impossible. That
is why, the authors believe, the literature is so sparse on the subject. The present paper
represents the first attempt at the application of the above concept to a laminated general
shell.

BACKGROUND INFORMATION

Each triangular element belonging to the ith layer is bounded by the ith and i+ 1th
interfaces (Fig. 2). The present element chosen is a quadratic triangle of C%type in the a—
B plane. Each interface triangle is characterized by six nodes, each of which is associated
with three nodal displacement parameters. By virtue of the assumption of transverse
inextensibility the transverse displacement w does not vary through the thickness. The
number of degrees of freedom per node is then 2N+3 for an N-layer composite shell
element. The choice of quadratic shape functions (in the a—f plane) makes it possible to
predict accurate transverse shear stress variation through shell thickness, achieve faster
convergence of displacements and stresses and obtain solutions to more complex problems.
The formulation of element matrices is not restricted to any particular shell geometry. The
element can be mapped onto any curved surface, depending on the choice of metrics g, ,(z, )
and g,,(a, f).

Details concerning formulation of the element stiffness matrix, consistent load vector,
effect of numerical integration on the convergence of displacements and stresses, solution
to global equations and element stresses, etc. have been presented in Refs [15, 17]. Once the
displacements are determined, the element stresses can be obtained using the relation[15, 17]

{e®(O} = [C {e°©)} (1a)
where
{7 = {620, (0, THD, TR, T} (1b)
{20} = {20, (), v, TR, TR} (lc)
{e2(Q)} = [4°(D)] {£°}. (1d)

[CD), [A9({)] and {e®} are as given by eqns (A1), (A2) and (Ad), respectively.

It is noteworthy that while accurate surface-parallel components of stresses can be
computed at special points on the interface triangle, the transverse shear stress components,
obtained from eqn (1), ©2({) and t§({), do not represent the true transverse shear stresses.
They are essentially the physical components corrresponding to average (through thickness)
covariant components of the true transverse shear stresses (the same is true for 7({) and
7). A method of determination of the shear stress variation through the thickness of a

Interface i + 1

Layer |

Fig. 2. Mapping of triangular element on a curved surface onto curvilinear coordinate plane.
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laminated shell, using the surface-parallel components of stresses computed by the assumed

displacement potential energy approach and the first two equations of equilibrium, will be
presented in the following section.

METHOD OF ANALYSIS

Arbitrarily laminated general shell
Equations of equilibrium for a general shell neglecting body forces are given by[18]

™/l=0 for m, I=1(or a), 2(or B), 3(or z) 2)
where covariant derivatives of contravariant components of stresses T, are defined as[19]
™l = P4+ TP 4+ Th et (3)

while the Euclidean—Christoffel symbol I'}, is defined as[18-20]

;; = J29’""(gm),l""'gln,p +glp,n) = r;; (4)
with[17]

(2)——1-—‘ (Hi)2 5
g ~g”(z)—g” R, (5a)

@ =—n =4 (1+—z—>2 sb
g222) = gn(z) =gn R, (5b)

1

933(2) 1T @) (5¢)
Gma(2) = g™"(2) =0 for m#n. (5d)

Relations (5) hold on account of the selection of the orthogonal curvilinear coordinate
system a, f§, z where a and f§ denote the directions of the lines of curvature of the shell
reference (bottom) surface, while z denotes the direction of the normal to the reference
surface. It is noteworthy that «, § and z represent the local (or element) coordinates for the
N-layer composite element. For a layer element, { denotes the direction of the normal and
is given by

where

i-1
d=73 t,; d =0 (6b)
me=)

Equation (3) contains derivatives of surface-parallel components of stresses with respect to
a and § which involves additional computations. These are avoided by integration of eqn
(2) over the volume of the triangular layer element and then application of the divergence
(Green—Gauss) theorem, which leads to{19]

J f f A J fﬂg dAf = 0 ™
vy o,

where[20]

=——i, for m,l= l(ora), 2(or f), 3(or {) andalso r=1,2,3. (8)
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1(0,0)

Fig. 3. The jth triangular layer element belonging to the ith layer.

Here ' =a, =B, 0° = and X, r = 1,2,3, is a fixed Cartesian system located at the
local (element) origin such that x' and x? are tangential to the a- and p-curves, respectively,
at the element origin. In eqns (2)-(4) and (7), repeated indices imply summation.

We are essentially interested in the first two equations of equilibrium, since these will
yield t2(0) and t§({). They correspond to r = 1,2 in egns (7). For a sufficiently small
element, which is reasonable to expect in most cases in practice at the time of convergence

g ~ /(g.()i, (no sumonr) 9

and these two equations are written as

jﬁwm /(901 () d49() = 0 (10a)

J me i (922() 44O = 0. (10b)

Referring to Fig. 3 and noting that

A = 8P (0)+S§"(¢)+f IPE) ¢ (I
S

the integrated form of the first equation of equilibrium, given by eqn (10a), can be written
as

-” 'OV (g O ) dS“’(C)+” 71(0) /(911 (0)n3(0) dS(0)

Syl : 550(0)

= ”W) [ OV (g1 O O+ OV (g1 OO+ 7 (O (913 (O3] AT () &
+ US% " OV (91 O )+ 7 OV (9112 (D] dSOQ)

- JJ;@(O) [x! l(O)\/ (g1 (O (0 + 2! (0)\/ (9.:(0)n2(0)] dS (0(0)- (12)
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Since the normal to any surface, parallel to the reference surface of the shell, coincides
with the {-coordinate direction

?]“(C) = VLZ(C) =0 and 7](3({) =1 for O < (

U
N
I

,,,,, N. (13)

In addition, since the normal to the vertical surfaces of the triangular layer element is
perpendicular to the {-direction

n3() = 0. (14a)

The relations between the non-vanishing covariant and the physical components of
the normal vector are given by[17, 18]

a,.
n,(o=ﬁl\/g',.(x + ;C) (14b)
d
n2({) = ﬁzx/g—n(l + %) (14c)
B

The relations between the contravariant and physical components of stresses are given
by[17, 18]

‘L'”(C)= G“(C) 5 (15a)
_ <1 c?,-+C>
gn +T
‘[22({)-‘—‘_‘“&@'——2 (le)
o)
.‘]22( + R,
12 - Taﬂ(g) 15
\/(911922) + R, + R,
T”(C) = I“E(O (ISd)
)t
\/911< + Ra>
D) = 15 ({) ' (15€)
(1435
\/922 R,
Noting that[17]
aso0 = (1+%55) (14 28 s (16a)

with
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dg:\/(g-ng—zz) da df (16b)
2714/2
aroQ) = [(1 + %ﬁ) (%::f)] dr’ (17

while §; and I, are the area and perimeter, respectively, of the jth triangular element over
the reference (bottom) surface of the laminated shell and 1/R and 1/R,r are given by[15]

(18a)

1 1
R (F - E> sin ¢ cos ¢. (18b)

Equation (12) with the help of eqns (13)-(17) can be written as

Usirgg(c)(u R 1+ d§ = SJT,Z(O) 1+R¢ 1+R, ds

2711/2
I [o("(on.+rz(onzl[(1 P 2T (T a9
4 T n

where

@) =10 for i=1,...,N—1 (20a)

and

0 =14 (t) = (20b)

142(0) = 0is used here, since integration through thickness starts from the reference surface.
The remaining condition, t$’(#,) = 0, will be automatically satisfied if the surface-parallel
components of stresses computed by FEM are exact.

Substituting eqns (1) and (A1)-(A3) into eqn (19) and integrating with respect to {
will yield

o+ 50+ FE)ss- [ ol )0+ 5)es

f {7, + D)0 0)-+ (o + By OO} L1PO) -7 PO}

+ {7, + cRii)ef (0) + (7, + cB) v (0)} {20 —9(0)}
+ {07, +Da)EL (1) + (i, + ) y@ ()} (P -0}
+ {7, + cDa)eR (1) + (¢, + i)y (1)} {(F2O-rP0)}) dT @20

where 7, and A, at a point on each side of the triangle over the reference surface can be
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p—curve :n(a)

(x,.y;)

(x4,y4) (2)
(0,0) e o

a—-curve
no
Fig. 4. A typical curved clement intcrface.

obtained in a manner discussed in the Appendix (refer to Fig. 4). The functions f({), etc.
are given by eqns (A6)—(AS8).

If a particular side of the triangular element is parallel to a coordinate direction a (or
B), then

Rr =R, (or Rg) and R, = .

The functions f({), etc. are then greatly simplified and can easily be obtained.
An equation similar to eqn (19), involving t§)({), can be obtained starting from the
second equation of equilibrium as given by eqn (10b).

. For a flat plate, R, = R; = o and /§,, = /g, = 1 when rectangular Cartesian
coordinates are used, i.e. « = x, § = y. It has been shown in Refs [14,21] that for such a
case, t({), averaged over the area of the element S, represents the exact transverse shear
stress at the centroid of the interface triangle. For a general shell, this is no longer deemed
possible, because of the complexities introduced by §,,, 4., R, and R, which are, in general,
complicated functions of « and B. However, a reasonably good estimate of t2({) (and
75({)) may be obtained by evaluating the surface integral

R R R
JL/T;Z(C)<1+T 1+—R~;— dS ~ T;?(C) 1+ R, ‘+W S;. (22)

12({) thus computed will represent the average transverse shear stress over the area (on the
reference surface of the curved element). This will be reasonably accurate, because the area
of an element becomes smaller and smaller as convergence of displacements and stresses is
approached. For the numerical evaluation of the line integral, depending on the shell
geometry, a sufficient number of integration points may be selected on each of the three
sides of the curved element on the reference surface. This is illustrated in Ref. [14] for a flat
plate. Computer implementation of the method for general shells is currently underway at
the University of Utah, the outcome of which will be published in a future paper. This
paper will address the approximate solution to the problem.

Shallow shell approximation
For such shells

I.

d+{ d+{
, —— &
R, ’ Ry

Then eqn (19) on integration with respect to { reduces to
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2 2
”s, W) dS = JL 7(0) dS -H[{Gﬁ”@) ({ - 27,)”’(‘0(”') %—‘}ﬁl
{ {
+ {tf,‘}(O) <g - z—h)+z§,‘;(z,.) Th}ﬁz:l df. @3

A similar expression can be obtained for t§}({). In the above equations o' etc. are obtained
using eqn (1).

It is noteworthy that the above approximation renders the variation of transverse shear
stresses through the thickness of each layer parabolic, which is true for a flat plate[14].

Cartesian-like local Riemann coordinates (CLRC) approximation

Every Riemann space admits Riemann coordinates for any given origin, where all the
Christoffel symbols vanish[20]. The Riemann coordinates with origin, in the present context,
may be defined as

o (3
x=x'=LJg',,da and y=x2=J;\/g’22dﬂ 24)

where x and y measure geodesic (shortest) distances between any point (a, §) or (x, y) within
the element and the local (element) origin along the « and f lines of curvature. These
Riemann coordinates may be thought to behave like rectangular Cartesian coordinates in
the vicinity of the local origin, because every Riemann space is also locally Euclidean
(i.e. admits rectangular Cartesian coordinates), which implies that every sufficiently small
(infinitesimally small in the limit) portion of the Riemann space is Euclidean. The above
two concepts, Riemann coordinates with origin and Riemann space being locally Euclidean,
may be fused into one powerful approximation in the context of FEM, because (i) each
finite element is associated with local coordinates the origin of which may be located
anywhere within the element and (ii) element size becomes smaller and smaller as con-
vergence of displacements and stresses is approached. It is noteworthy that a locally
Euclidean approximation alone will imply that a curved shell element is being replaced by
a flat (plate) element (i.e. the effect of curvature is completely neglected), which introduces
the domain approximation. The present approximation, in contrast, does not introduce any
domain approximation and retains some curvature effect, while simplifying the equilibrium
equations considerably.

The equations of equilibrium, under the above approximation, become the same as
those for flat plates (with Cartesian coordinates) with x and y defined by eqns (24), which,
following the logic in Ref. [14], may be written as

) ¥ 1 Cz ) !
tt(!g(C) = TQ(O) - § [( - §Z> {aplnozdcyl —dlzlnq"dexl
+ac(x,)ln<:‘dc(’y2 _yl)_tg}llno‘dc(x2_xl)—as)lno‘;icyz'*"tg?l'n%dcxﬁ

I . .
+ '2'1_ {a((!l+ I)Inozdeyl _7‘(:,;- I)'nozdexl +0’£’+ I)In%de(yz—yl)
l

_Tgﬁ+ ”‘ntzdc(xZ —X|)—0'£i)| n%deyz +‘tgﬂ+ I)I n%dexZ}}' (25)

5}({) can be obtained in a similar manner. It has also been shown in Ref. [14] that the
centroid of a triangular element interface is the point of exceptional accuracy for transverse
shear stresses.

SAS 23:8-E
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NUMERICAL RESULTS AND DISCUSSIONS

Numerical results for transverse shear stresses, using the composite-shell triangular
clement of Refs {15, 17] encoded in the FORTRAN program SANWAT (shell analysis
with accurate theory) will be presented here. The equilibrium method presented hercin will
be applied to sample problems and results will be compared to those obtained analytically.

Example 1. A simply supported isotropic circular cylindrical shell under uniform internal
pressure

A shell problem for which a closed-form solution is available is that of axisymmetric
bending of an isotropic simply supported circular cylindrical shell under uniform internal
pressure (Fig. 5). The shell is free to move longitudinally at the edges. A one-dimensional
element which fulfills the axisymmetric condition of independence of stresses and dis-
placements of position around the circumference of the cylinder is obtained by combining
two right-angled triangular elements as shown and imposing the condition of equal dis-
placements in the radial and also longitudinal direction at the points having the same 0-
coordinates while displacements at all nodes in the circumferential direction vanish. The
central symmetry of the problem again allows the modeling to be limited to half the length
of the cylindrical shell. The cylindrical shell analyzed is 20 in. long with an inner-surface
radius of 10 in. and a thickness of 0.2 in. E and v of the shell material are 30 x 10° psi and
0.3, respectively. The internal pressure is 100 psi.

Since cylindrical shells under such loading are characterized by a boundary layer effect,
convergence has been studied by using coarser mesh sizes in the central portion of the
cylinder and a gradually finer mesh near the edge (Fig. 6). Table 1 shows the convergence
of 1,,(z) at x = L[2, computed using the present finite element theory, with the CLRC
approximation. It is interesting to observe that although integrated (through thickness) the
equilibrium equation is not, in general, satisfied, by the stresses computed by the finite
element theory because of the presence of mid-surface stretching, resulting in non-vanishing
transverse shear stresses at one of the two exposed surfaces, those values are negligible with
finer mesh sizes. In other words, in the present problem a tangential force equilibrium is
almost satisfied. The slight difference (<4%) between analytical and finite element results
is probably due to the facts that (i) {(z,,) at x = L2 computed by the finite element method
is yet to converge and (ii) the present finite element analysis computes transverse shear
stresses only at the centroid of the element adjacent to the edge. The analytical results based
on the classical theory are obtained using eqn (2.11.1a) of Ref. [22], which, on substitution
of the stresses and integration, finally becomes

1
(a +Z/R)E;l IR [”“V {Z(Z‘H/Z) +3% (* ~t2/4)}w‘x

+ {—1; -+ 43~ 13/8)}11'_“;} (26)

T (X, 7) =

0.2" 8,y
—i
BRI ARRI
p
10’ &
A . I
f X
~F.E. MODEL
HEE R SR AR L
RN ER RN

Fig. 5. A circular cylindrical shell under internal pressure.
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Fig. 6. Finite clement models for the circular cylindrical shell under internal pressure,

Table 1. Convergence of 1,.(z) at the edge of
the isotropic simply supported cylindrical shell
under internal pressure

R (in.) LIRt 1,.(1/2) at edge
10 14.14 5583.30
50 732 5717.96
100 447 5692.12
200 3.16 5716.40

“Exact” values of t,,(L/2, #/2) are obtained with and without an assumption which neglects
the curvature effect and interestingly enough, this assumption yields a result, which is in
close agreement with that obtained without making this assumption.

The next result is concerned with effect of L/,/(Rf) on the non-dimensionalized
maximum transverse shear stress

 (Cdmal

‘xz max = T * 27
Felnae =, IR0 @

In the present investigation, the radius of the circular cylindrical shell is varied keeping the
length and thickness unaltered. Table 2 shows that t,,(L/2,¢/2) is, for a short cylindrical
shell, almost constant for all values of L/,/(R/). This is an extremely useful result, because
transverse shear stresses in such shells need to be computed for one set of geometric
parameters only.
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Table 2. Effect of L//(Rr) on 1,,(1/2) the edge of the isotropic
simply supported cylindrical shell under internal pressure

7.(0) 1.:(1/2) T.(1)
No. of divisions (psi) (psi) (psi)
10 0 -59.22 24.49
19 0 —334.98 -2.70
36 0 —~376.17 —4.42
72 0 - 394.86 - 5.00
Classical theory
(ncglecting
curviture effect) 0 —-412.13 0
Classical theory
(with curvature
effect) 0 —415.20 0

Example 2. A clamped asymmetrically laminated circular cylindrical shell under uniform
internal pressure

A final problem which illustrates the effect of lamination in a thin shell is that of a
two-layer internally pressurized circular cylindrical shell which is supported at both edges
in such a way that radial deflection and longitudinal rotation are restrained but axial stress
and surface-parallel shearing stress vanish. The length of the shell and the inner radius are
20 and 10 in., respectively. The fiber reinforced layers are identical except that the inner
layer has a fiber orientation in the longitudinal direction while the fiber orientation in the
outer layer varies. The thickness of each layer is 0.1 in. E|, and E,, of the layer material
are 40 x 10° and 10° psi, respectively. In-plane shear modulus, G,,, and transverse shear
modulus, G,,, are assumed equal to 0.5x 10° psi while the remaining transverse shear
modulus, G,;, is assumed to be equal to 0.2 x 10° psi. Major Poisson’s ratio, v,,, defined to
be ratio of strains, perpendicular and parallel to the fiber direction, caused by the stress in
the direction of the fibers, is taken equal to 0.25. The displacements and stresses are
independent of the circumferential coordinate, 6, but there is an additional rigid body
rotation of the shell cross-sections. A closed-form solution for the problem with transverse
shear deformations neglected is given in Refs [5, 23].

The finite element model chosen is similar to that of Fig. 6(d). Figures 7 and 8 show
variation of (,.)inerface A4 (Tg-)inerrace at the edge, x = L/2, with the fiber orientation of the
outer layer, §,. Present FEM results are compared to the CLT solutions[23]. The difference
between the two sets of results may be attributed to the approximation in obtaining the
present solution and neglect of shear deformation effect in the CLT. It will be possible to
offer a better explanation regarding the role of shear deformation in causing the above-
mentioned difference, when FEM results using more accurate derivation for the transverse
shear stresses become available in the near future.

Figures 9 and 10 show variation of 7., and z,,, at the edge x = L/2, with respect to
x for §, = 45°. As expected, 1,, and 7, in the boundary region of the cylindrical shell,

15r

at X =

a) e

0° 15° 30° 45° 60° 75° 90°
8,

Fig. 7. Variation of (T, }imernce at the edge with fiber orientation of the outer layer.
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Fig. 8. Variation of {Ts,)imemne at the edge with fiber orientation of the outer layer.
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Fig. 9. Longitudinal variation of (T,,)iners fOr the two-layer cylindrical shell.

computed by the present method are in disagreement with the corresponding CLT results.
This is most likely due to the shear deformation effect, which is neglected in the CLT.

Figures 11 show variation of t,, through the thickness of a two-layer cylindrical shell
for 8, = 0, 15, 45, and 90°, with #, = 0°. 7,,, computed by the present method, does not
completely vanish at the outer surface, as required ; however, the error is negligible, which
implies that the through-thickness integrated form of the equilibrium equation is nearly
satisfied. It is interesting to observe the change in the shape of the curve (z vs 1) as §,
varies from 0 to 90°. For the unidirectional shell (§, = 0), this variation is parabolic as
expected, because the shell is homogencous. The curve has two lobes for §, = 15 and 45°
(looks like a split dumbell with the top half becoming thinner as , increases). For , = 90°,
this curve looks like the longitudinal section of a sitar (an Indian musical instrument).

CONCLUSIONS

An approximate equilibrium method for the prediction of the transverse shear stress
variation through thickness of a laminated thick shell is presented. Although the method
is demonstrated for an assumed quadratic displacement triangular element based on LCST



1158 R. A. CHAUDHUR! and P. SEIDE

2.5 . FEM}Mid-surface.
0.0 ==- CLT ) Inner Layer
-2.5 v FEM}Mld-surtace,
—— CLT j Outer Layer

-5.0 y

S -7s x  FEM

N Interface

R —-— CLT

o -10.0f

-

-12.5

-156.0t
-17.5} §|=0°, §z=45°

-20.0p

v

-22.5 s
0.6 0.8 1.0
x/t

Fig. 10. Longitudinal variation of (%y,)inwermace fOT the two-layer cylindrical shell.

4 FEM
— CLT

3t/4 3t/4

1t/2 | t/2

t/4 t/4

0

0
(a) 92= 0° (b) 61=15° {c) 63=45° (d) §2=900
Fig. [1. Variation of (7,)uerace at the edge through thickness of the two-layer cylindrical shell.

and transverse inextensibility, the scope of the method is not limited to either this kind of
shell theory or this particular element. In fact, the principle behind the method presented
herein is applicable to any laminated shell element, once the surface-parallel components
of stresses have been computed at each interface by FEM irrespective of the kind of
laminated shell theory (i.e. LCST, CST or CLT) used or element shape employed in
computing these stresses.

Results presented herein are based on the CLRC approximation, which gives a reason-
ably good estimate of the transverse shear stresses. More accurate expressions for t2({)
and tj}({) for specific shell geometries are available in Ref. [17], the computer implemen-
tation of which is currently underway. These will be published in a future paper.

1t may be noted that the success of this method depends on either pointwise convergence
of derivatives of displacements, which will ensure satisfaction of equilibrium equations
at every point or tangential force equilibrium (i.e. through-thickness integrated form of
equilibrium equations) at a point on the reference surface. However, in FEM, derivatives
of displacements converge only in the mean-square sense and the tangential force equi-
librium at a point, as a result, may not be satisfied. Nevertheless, as has been observed in the
example problems considered, the tangential force equilibrium may often be approximately
satisfied. The utility of the method is that it is relatively straightforward given the complexity
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of the problem under investigation. Moreover, detection of error is immediate if and when
such an error arises ; because, in that event, the computed transverse shear stresses will not
simultaneously vanish at both the exposed surfaces. At stake here is a broader issue—the
accuracy of the stresses (more precisely, the stress gradients), computed by an assumcd
displacement potential energy based FEM. In other words, is the local law of conservation
of momentum satisfied, for a laminated anisotropic shell, with the same accuracy as the
law of conservation of energy (a global law), when solutions are obtained by such a method?
The present method would fail when the former law fails to be satisfied within an acceptable
range of accuracy. An alternative approximate method[21], developed recently for arbi-
trarily laminated plates may be extended to shells and employed in such cases.
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APPENDIX

This section presents some of the matrices and equations, referred to in the background information and
theoretical formulation of this paper.
For anisotropic lamina with fiber orientation §,, the material or elastic stiffiness matrix is given by{i1, 17]
ey 0 0
o 0 0
[C™ = 5 0 0 |. (Al)

Symm. ¥
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The clements of [C} can be obtained from the orthotropic material property matrix [C') by a transformation
of coordinates[11, 12]. The six non-vanishing elements can be expressed[12, 14} in terms of E,,, E,5, £13, ¥12, G5,
G,; and G,;. Subscripts 1 and 2 denote directions parallel and perpendicular to the fiber, the 1-2 plane being
tangential to a surface parallel to the reference surface of the shell, while subscript 3 denotes the direction normal

to the reference surface.
[A9(0)] referred to in egn (1d) is given by[[5, 17]

[ 1-¢, U,
———Aﬁn(C) 0 0 0 AE')(C) 0 0 0 0 0
=g/ 7
0 0 0
" Wo O o ° 0 0
) - 1 _C/li 1 _C/,l C/’,‘ C/t,
49Q) 0 0 wo 6 B0
1
0 0 0 0 0 0 0 0 A——_ﬁ” D
i
i 0 0 0 0 0 0 0 0 —_AS"(C) |
where
N
A0 =1+ R
A}"(C) =]+ J,_+_£ .

Ry

{£9} referred to in eqn (1d) can be written as[15, 17]

(%) = 189 {d).

The matrix [B{] referred to in eqn (16) is

(R] (0] (@]
Bil=|10] (R} [Q]
(M] [N] (7]

where the submatrices [0] are (4 x 2) null matrices while the remaining submatrices are of the form
[x]=[lxi. .. Ixdd. . 1x6])

with

1 1 dg,
—~o,, el
. 9udp B
1 @g, 1
% —0
9.9y OB * 9s e
— 0 1
Ri= %y o,
gayﬂ aa @
1 1 dg,
—Q®
a 995 B

[ = [¢/R. /Ry 0 0]

r_|lg L J
(7] —Lﬂm. ey

1 d,,
—- 0
1 (1 * R, b0

M0 =
k 0 . (1 + é*—’)d),,

(AD

(A3a)

(A3b)

(Ada)

(Adb)

(Adc)

(A5a)

(ASb)

{ASc)

(ASd)
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! 4

N0 = (ASe)
1 d
0 ;" (1 + E)‘bk

i=12,....,N, k=1,2,...,6.
The functions fP({) and /Y ({) referred to in eqn (21) are given by

R, (Ry+d+1)

SO0 = - g R PO+ g REO) (A6a)
___R (Ry+3+1)
PO =~ g7 H0- g B0 (A6b)
where
2al+b -b?
Fi(Q) = (——iat—)(aC’+bC+c)”’ + (4‘;:,: ) In |2{a(a{*+b{ +c)}"*+2a{ + B| (ATa)
Fa0) = (al* +b[+¢)"* + %";9 In {ffjt—b + (aC’+b{+c)"’}
_ (c—bd+2ad?) = |(b=2ad)+2(c—bd)  (ad>—bd+c)"*(al* +b{+0)"
s Ll B T7 e S @0 (AT0)
with
a=R%+R} (A8a)
b=2{(Rr+d)Rx+Rid} (A8b)

¢ = {RI-(Rr+d)* +Rid}}. (A8o)



